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ABSTRACT

DNA sequencing technologies allow the rapid sequencing of
full genomes in a cost-effective way, leading to ever-growing
genomic datasets that comprise thousands of genomes and
millions of genetic variants. In population genomics and
genome-wide association studies, widely used statistics such
as linkage disequilibrium become computationally demand-
ing when thousands of whole genomes are investigated. Long
analysis times and excessive memory requirements usually
prevent researchers from conducting exhaustive analyses,
sacrificing the ability to detect distant genetic associations.
In this work, we describe a generic algorithmic approach for
organizing arbitrarily distant computations on full genomes,
and to offload operations from the host processor to acceler-
ators. We explore FPGAs as accelerators for linkage disequi-
librium because the bulk of required operations are discrete,
making them a good fit for reconfigurable fabric. We de-
scribe a versatile and trivially expandable architecture, and
develop an automatic RTL generation software to search the
design space. We find that, when thousands of genomes
from complex species such as humans, are analyzed, current
FPGAs can achieve up to 50X faster processing than state-
of-the-art software running on multi-core workstations.

Keywords

population genomics; linkage disequilibrium; accelerator

1. INTRODUCTION
Linkage disequilibrium (LD) is a fundamental technique

that is widely used in population genomics and genome-wide
association studies (GWAS) in order to understand how mu-
tations interact with each other within a population. The
term, coined in 1960 by Lewontin and Kojima [13], refers
to the non-random association between alleles (variants of a
gene) at different loci. Traditionally, LD-based analyses are
conducted on human genomes to gain insight into the ge-
netic composition of populations, as well as changes in this
genetic composition that are driven by evolutionary forces
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such as natural selection and genetic drift [8]. Other ap-
plications of LD that are of significant importance include
disease-gene mapping to understand genetic factors for in-
herited diseases [20], detecting drug-resistant mutations in
pathogens such as HIV [9, 16], or revealing reasons for drug
treatment failures [5]. With improvements to DNA sam-
pling techniques and the continuous sequencing of genetic
material from more species of flora and fauna, LD-based
analyses are now even more pervasively used in the study of
population genetics beyond that of humans [21]. The impor-
tance of LD-based analyses can be observed from titles of
population genetics papers declaring “Population genomics:
Linkage disequilibrium holds the key” [10].

Genomic datasets that are suitable for population genetic
analyses comprise thousands of genomes from different in-
dividuals (also referred to as samples), and millions of ge-
netic variants (e.g., the 1000 Genomes project, http://www.
1000genomes.org). Genetic variation is observed in the form
of so-called single-nucleotide polymorphisms (SNPs), a term
that is used to describe single base-pair changes in a DNA
sequence. The amount of genetic variation (discovered poly-
morphisms) increases with the number of sequenced genomes,
leading to escalating dataset sizes. Roughly speaking, dou-
bling the sample size leads to doubling the number of associ-
ated variants discovered [24]. Computing LD on this abun-
dance of data can become prohibitively expensive, both in
terms of long execution times as well as excessive memory re-
quirements. Typically, researchers opt to narrow the extent
of LD computations, using subsets of the available SNPs,
in favor of significantly reduced analysis time and memory
footprint, sacrificing the ability to detect highly correlated
but potentially distant SNPs. Therefore, it is essential to
devise high performance implementations that enable rapid
and wider LD evaluations on complex populations such as
humans (≈ 10 million SNPs in the human genome).

Modern microprocessors are not adequately equipped to
deliver high performance for LD computations. While the
increase in transistors keeps pace with the rate at which
molecular data become available (Fig. 1), the current trend
to increase core performance by increasing the SIMD width
does not yield a significant performance boost in LD calcula-
tions. The performance bottleneck for LD is the calculation
of allele and haplotype (pairs of alleles on the same chro-
mosome that tend to be inherited together) frequencies in
a population. Since alleles are typically encoded as one- or
two-bit entities (depending on certain biological assumptions
such as the infinite sites model [12]), the allele and haplotype
frequency calculation relies mainly on the enumeration of set



bits in registers, an operation widely known as population
count. While current microprocessor architectures provide
hardware support for population count, in the form of an
intrinsic instruction (since Intel Nehalem and AMD K10),
the specific intrinsic command operates strictly on regular
registers and does not support wider SIMD registers. There-
fore, potential performance benefits from the use of SIMD
instructions are diminished due to the required employment
of a scalar instruction for the population counter at the mi-
crokernel level. To avoid reader confusion, we henceforth
refer to the bit-enumeration operation as “popcount”.

This study explores the potential of FPGAs to acceler-
ate LD computations as required by large-scale population
genomic and GWAS analyses. In addition to the apparent
need for reducing execution time, a challenge lies in enabling
arbitrarily wide LD evaluation on full genomes, a computa-
tion exhibiting memory requirements that typically exceed
the amount of available memory on present-day accelerator
platforms. The contribution of this work is two-fold:

• We implement a versatile accelerator architecture for
faster analyses under the widely adopted infinite sites
model [12]. In the interest of conducting a rapid de-
sign space exploration, as well as reducing development
time and debugging effort, the architecture is described
in the C language, through a series of custom RTL-
specific library calls. Each of the custom library calls
augments various instances of a unified data structure,
where each instance represents a building component.
A Verilog backend is deployed to generate the Ver-
ilog RTL description for the accelerator architecture.
We find that performance gains become more preva-
lent (up to 2X higher throughput) when a moderate
number of sufficiently wide, pipelined popcount oper-
ators are employed in contrast to an excessive number
of narrow popcount operators.

• We present a generic algorithm to execute on the host
processor in order to schedule and offload computa-
tions to the accelerator platform. The host imple-
ments an iterative procedure that splits large genomes
into variable-size subgenomic regions depending on the
distribution of SNPs along the genome, while ensur-
ing that each subgenomic region is of the same size
in terms of number of SNPs. The regions are paired
on the host in order to cover all required LD com-
putations and the pairs are offloaded to the accelera-
tor. On the FPGA, dedicated circuitry organizes the
SNPs into groups and carries out the LD computa-
tions for every pair of regions by pairwise combining all
the SNP-groups in both regions. This approach facili-
tates the expansion of the hardware design to comprise
more processing cores while not requiring changes on
the software side. Furthermore, it permits LD evalu-
ation between arbitrarily wide and potentially distant
subgenomic regions without conducting redundant op-
erations or requiring excessive memory space.

The remainder of this paper is organized as follows: In
Section 2, we describe the mathematical operations and con-
cepts required to compute LD. Thereafter, we discuss related
work on software implementations in Section 3. Section 4
presents the proposed accelerator system, while Section 5
provides implementation details and a design space analy-
sis. In the following Section 6 we present a performance
evaluation, and conclude in Section 7.
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Figure 1: Growth of molecular data available in
GenBank as well as of number of transistors in mi-
croprocessors, GPUs, and FPGAs (source: [1]).

2. LINKAGE DISEQUILIBRIUM (LD)
The primary source of genetic variation is the mutation.

Population genetics investigate mutations by analyzing lists
of individuals and their associated DNA sequences. Prior to
the analysis, a so-called multiple sequence alignment (MSA)
is computed, i.e., a n × m matrix that comprises n rows
(one row per individual) of m columns each (also referred
to as alignment sites). If a mutation has occurred at an
alignment site, this site becomes a SNP, to differentiate from
monomorphic alignment sites which are non-informative for
evolutionary purposes. Therefore, a SNP is by definition
polymorphic as it represents a single-nucleotide substitution
of one DNA base (A, C, G, and T) for another. An example
of an MSA of 4 individuals that comprises 30 alignment sites
of which 5 are SNPs (highlighted in blue and italics) is shown
below.

sample_0 ATGGCA TACCC CT-CCAAC TAGGA TTC CAA

sample_1 ATGGCC TACCA CTCCCAAC TAGGC TTC C-A

sample_2 ATGGCA TAC-C -TCCCAAG TAGGT TTT C-A

sample_3 ATGG-- --CCC CTCCCAAC TTGGT TTC CAA

2.1 Representation of Genomic Data
Real-world analyses and in silico simulations (analyses on

synthetic datasets) often adopt the infinite sites model [12]
(henceforth denoted ISM). Under this model, it is assumed
that there is an infinite number of sites, and consequently
each new mutation appears on a site where previously no
mutation has occurred. Due to the ISM assumption, SNPs
can be represented by binary vectors, where each unset bit
(‘0’) represents the initial–before mutation–state (usually re-
ferred to as the ancestral state), while each set bit (‘1’) in-
dicates a new–after mutation–state (usually referred to as
the derived state)1. For the rest of this paper, we assume
that each SNP is represented by a group of Nword w-bit-long
words with Nword defined as follows:

Nword =

⌈

Nseq

w

⌉

,

with zero padding if Nseq mod w 6= 0, Nseq is the num-
ber of samples, and w = 2p with p ∈ N. This also implies
1It should be noted that the assignment of ‘0’ to the an-
cestral state is arbitrary. One could easily have used ‘1’ to
represent the ancestral and ‘0’ for the derived state.
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Figure 2: Pictorial representation of samples in
the (k × w) × n genomic matrix, G. Each row in
G represents the genome of an individual (sam-
ple). Columns represent SNPs at different locations
within the genome.

that the entire genomic dataset can be represented by a
(k × w) × n matrix, G, where k = Nword. Each row in G
represents a particular sample while each column represents
a SNP. We call this the genomic matrix, which is illustrated
in Figure 2. We assume here that all monomorphic sites have
been discarded through an initial prefiltering stage, and con-
sequently the genomic matrix G is dense and consists solely
of SNPs. For clarity reasons, we omit the SNP locations in
Figure 2 but keep in mind that neighboring SNPs in the ge-
nomic matrix representation can be thousands of sites apart
in the genome. In future discussions we represent a SNP as
a column vector s.

2.2 Computing LD
The fundamental concept behind the computation of LD

deals with the probability of independent events. If the
probability of two mutations occurring at two sites in the
same sequence is not the same as the product of the proba-
bilities of the two mutations occurring independently, then
the event that two mutations appear in the same sequence is
said to be not independent, or the two SNPs are in linkage
disequilibrium. Mathematically, we want to compute

Di,j = Pi,j − PiPj , (1)

for every pair of SNPs, si and sj , where Pi,j represents the
probability that a sample has mutations in both SNPs, si
and sj , and Pi and Pj are the probabilities for the inde-
pendent events that a mutation has occurred in si and sj ,
respectively. When D = 0, si and sj are in linkage equi-
librium, i.e., mutations in si and sj occur independently of
each other. More interestingly, D 6= 0 if the two SNPs are
in linkage disequilibrium.

Given SNPs of length Nseq, and ignoring (for the moment)
that each SNP is stored as Nword words, the probability
that a mutation occurs in a SNP sx, denoted as Px, can be
obtained with the following equation:

Px =
POPCNT (sx)

Nseq

, (2)

which counts the number of ‘1’s in sx and then divides it
with the total number of bits in the sx.

Pi,j can be similarly computed by first counting the num-
ber of samples that have mutations in both SNPs, si and sj ,
and then dividing that number by Nseq. Mathematically,
Pi,j can be computed as follows:

Pi,j =
POPCNT (si&sj)

Nseq

(3)

Using Equations 2 and 3, we can then compute Di,j for all
possible pairs of SNPs, si and sj , using Equation 1.

The formulation of LD in Equation 1 can become prob-
lematic since the sign and range of Di,j vary with the choice
of representation and the frequency at which different mu-
tations occur. This makes it difficult to compare Di,j across
different genomic regions. As such, several standardization
methods have been proposed for D, with a commonly used
one being the squared Pearson coefficient r2ij :

r2ij =
(Pi,j − PiPj)

2

PiPj(1− Pi)(1− Pj)

=
D2

i,j

PiPj(1− Pi)(1− Pj)
(4)

This measure of LD has the advantage that all r2ij values
remain between 0 and 1, with higher numbers represent-
ing stronger association. More importantly, even with this
representation of LD computation, notice that the cost of
computing the r2i,j values for all pairs of SNPs is dominated
by the cost of D.

3. RELATED WORK
Advances in modeling and statistical analysis for popu-

lation genetics in the past decade [14, 17, 15] were not ac-
companied by high performance computing approaches due
to the limited amount of available molecular data. More re-
cently, driven by sequencing cost reductions that have gen-
erated a plethora of molecular data suitable for population
genetics analyses, several software tools capable of analyzing
genome-scale datasets have been released.

Pfeifer et al. [18] released PopGenome, an R package for
population genetics analyses that can compute a wide range
of statistics, including LD, on whole-genome SNP data. Al-
though PopGenome can exploit multiple cores for faster exe-
cution, the computational kernel for pairwise LD assessment
is not optimized to exploit intrinsics and the cache hierarchy.

Chang et al. [6] released a comprehensive update to the
widely used PLINK software [19] for whole-genome asso-
ciation and population-based linkage analyses (over 9,000
citations according to Google scholar). The updated imple-
mentation (PLINK 1.9) exhibits significant performance and
scalability improvements in comparison with the initial soft-
ware. It heavily relies on bitwise operations, multithread-
ing, and high-level algorithmic improvements for the most
compute-demanding functions, such as distance-based clus-
tering and LD-based pruning. PLINK 1.9 implements the
squared Pearson coefficient as a measure of LD and deploys
the SSE2-based Lauradoux/Walish popcount algorithm to
achieve high performance [6].

Alachiotis et al. [4, 3] released the population genomics
software OmegaPlus. Similarly to PLINK 1.9, OmegaPlus
computes the squared Pearson coefficient as a measure of
LD. The implementation differs at the microkernel level since
the performance-critical popcount operation is computed via
the intrinsic popcount instruction supported in hardware.
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FPGA researchers have successfully accelerated compute-
intensive bioinformatics kernels in the past, such as sequence
alignment [22] and phylogeny reconstruction [25]. However,
to the best of the author’s knowledge, the work presented
here is the first to demonstrate the efficiency of FPGA tech-
nology for the acceleration of large-scale LD computations.

4. SYSTEM DESIGN
Our proposed accelerator system consists of four main

components (Fig. 3). The host processor parses an input
dataset in any of the widely used formats for genomic data
(FASTA or VCF for real data, ms [11] or MaCS [7] for sim-
ulated data), and constructs the genomic matrix by filtering
out the monomorphic–non-informative–sites. Thereafter, it
executes the generic algorithm for scheduling and offloading
computations to the FPGA co-processor. On the FPGA, the
data processor handles the communication/synchronization
with the host, as well as the data accesses to/from the on-
board DRAM, whereas the LD processor is the computa-
tional kernel that carries out the population genomics cal-
culations. Decoupling the data handling (data processor)
and the execution (LD processor) parts on the co-processor
permits the deployment of LD processors of any size (varying
number of LD cores and/or popcount width) without requir-
ing any changes to the data processor, which facilitates the
exploration of the design space.

4.1 Host Processor
As already mentioned, a key challenge in conducting wide

LD analyses efficiently is to avoid redundant computations.
Our solution requires a pair of genomic regions of arbitrary
size (number of SNPs), A and B, as input for any LD compu-
tation. While current software implementations compute all
LD scores between SNPs in the same genomic region, allow-
ing to provide a pair of regions as input attacks the problem
of computing long-range LD efficiently. Association studies
that investigate long-range LD in genomes might not require
the computation of LD scores between SNPs located inbe-
tween the distant regions of interest. For instance, if a study
investigates association between two distant genes, comput-
ing the association between all intermediate genes as well is
only going to result in many unnecessary calculations and
excessive memory requirements. Thus, unlike existing soft-
ware implementations, the generic algorithm on the host can
consider only the SNPs in the distant genes to reduce exe-
cution time and memory footprint, while the single-region
case can be trivially facilitated by setting A = B.

To enable the computation of arbitrarily large genomic
datasets, the genomic matrix is organized by the host pro-
cessor into large chunks, depending on the size of available
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Figure 4: Illustration of the compute-list for arbi-
trarily distant LD computations.

main memory on the co-processor. Thereafter, each chunk
is organized into a number of non-overlapping SNP-groups
of fixed size S SNPs (e.g., S = 128). A subset of the SNP-
groups in the same chunk (if A = B) or in two different
chunks (if A 6= B) are used to construct two SNP-group lists,
Alist and Blist, achieving full coverage of the regions of in-
terest in A and B, respectively. Each pair of SNP-groups is
a compute-group that entails all pairwise LD computations
between the SNPs in the two SNP-groups. Consequently,
each pair of SNP-group lists defines a compute-list that im-
plicitly describes all required LD computations between the
two regions of interest in A and B. Once the compute-list
is constructed, it is offloaded to the co-processor for execu-
tion. Upon completion and return of the results, the steps
of compute-list construction and offloading are repeated for
the next chunk or pair of chunks until the entire genomic
matrix is completed. Figure 4 illustrates the compute-list,
where each tile represents the output of a compute-group,
essentially a S × S matrix of LD values.

4.2 Data Processor
The data processor architecture is depicted in Figure 5.

To facilitate the trivial instantiation of variously sized de-
sign points (varying LD processor size), the data processor
is implemented as a series of parameterized FSMs that are
configured and controlled by a non-parameterized top-level
FSM following a master-worker scheme. The top-level FSM,
denoted DTOP in Figure 5, parses a set of configuration in-
structions that are used by the host processor to offload
computations to the LD processor. These instructions are
classified as follows: a) load instructions, b) dataset instruc-
tions, and c) store instructions. The DTOP FSM decodes
the incoming instructions and configures the associated FSM
of each class. Once all three worker FSMs are configured,
DTOP initiates the LD computations by enabling the three
FSMs. Thereafter, the LD processor is controlled by the
worker FSMs which cooperate to load the genomic data from
main memory, schedule operations on the LD processor, and
store the results back in memory. To avoid increased row
buffer misses and achieve high memory bandwidth, the SNP-



Load

FSM
Dataset

FSM

Store

FSM

DTOP

FSM
Data 

Processor

To Host Processor

sync sync

DRAM

Memory

Controller

Channel A

LD 

Processor

DRAM

Memory

Controller

Channel B

Figure 5: The data processor architecture.

group size S is appropriately set by the host processor to en-
sure that the SNP-groups, which are retrieved by the data
processor during computations, do not exceed the DRAM
row buffer size.

4.3 LD Processor
The LD processor architecture is depicted in Figure 6.

The processing scheme is similar to searching a database
for given queries. The SNPs in one of the two input re-
gions are the queries while the SNPs in the other region
are the database objects. A fraction of the query SNPs are
initially loaded into a dual-port multi-bank memory sub-
system (Data Mem A in Fig. 6). Thereafter, the database
SNPs are passed through the two compute grids of LD cores
(LD Core Grids A and B in Fig. 6) which calculate the LD
scores between the database SNPs and all the query SNPs
in Data Mem A. Query SNPs are provided to the two grids
of LD cores through the two available ports on every DM
Bank. Only a small fraction of the query SNPs are expected
to fit in the Data Mem A on-chip memory, thus several it-
erations are needed to complete the required all-to-all LD
calculations. To improve performance, double buffering is
employed for loading the database SNPs from memory and
streaming them through the LD Core Grids. For this rea-
son, it is of vital importance for performance that the DM
Bank size is chosen carefully so that it can store a sufficiently
large number of query SNPs to allow enough time to refill
the second database input buffer. This is because, each SNP
in the database input buffer (not shown in the figure, it is
part of the data processor) is parsed as many times as half
the number of SNPs in a DM Bank before all query SNPs
in Data Mem A are pairwise combined with the database
SNPs in any of the two input buffers.

An LD Core Grid consists of x× y cores, organized into y
rows of x cores each. The LD processor instance in Figure 6
contains 8 cores per grid (x = 4, y = 2). Every LD core
matches a query SNP to a database SNP. Every SNP is
simultaneously streamed through an LD core and an AFC
block (Allele Frequency Calculator, not part of the LD core),
which computes the frequency of the allele represented by
the set bits. Note that, it is possible to avoid instantiating
AFC blocks when genomic sequences without missing data
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Figure 6: The LD processor architecture for a design
point that exhibits 16 LD cores.

are analyzed, since the per-SNP allele frequencies can be
computed during the prefiltering stage and added to the
genomic matrix as metadata.

Figure 7 shows the pipelines of the AFC block and the LD
core to demonstrate how the AFC block operations over-
lap with the HFC block operations (Haplotype Frequency
Calculator), which is part of the LD core. Both AFC and
HFC blocks contain a pipelined popcount implementation
(POPCNT), which exhibits an array of ROM blocks at the
lowest level and an adder reduction tree afterwards, to count
the existing alleles and haplotypes, respectively. The SNPs
are loaded in segments of size equal to the POPCNT in-
put width. Therefore, the final count of alleles and hap-
lotypes is only available at the output of the accumulator
(ACCUM) after all the samples per SNP have been loaded.
The frequencies are computed through a floating-point divi-
sion (DIV) with the total sample size. Note the additional
component in the HFC block, denoted HAPCONST, which
constructs a bit vector where every set bit represents a valid
haplotype. Currently, this is implemented as a logical and
operation, which covers the cases of high-quality real-world
datasets as well as simulated datasets. Additional logic is
required in HAPCONST to account for alignment gaps or
missing data in the dataset.

When the allele and haplotype frequencies are computed
(output of AFC and HFC blocks in Figure 7), the LD Pipe
implements Equations 1 and 4 to compute D and r2, respec-
tively. Changing the LD metric would only require changing
the floating-point LD Pipe, and would not affect the rest of
the LD processor. The results are temporarily stored in a
FIFO buffer. The OC Sel module of the LD processor (see
Fig. 6) retrieves LD scores from the FIFOs in a Round-
Robin fashion, and transfers them to the data processor.
Scores from several FIFOs may be retrieved simultaneously
to consume all the available memory bandwidth.
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5. IMPLEMENTATION
The generic algorithm executed on the host processor is

implemented in C and the parallel processing mechanism
of the compute list was modeled using the OpenMP API
for parallel programming. The RTL description of the data
processor is directly implemented in Verilog HDL, while the
LD processor is automatically generated by an appropriately
adapted RTL generation software implemented in C, which
was initially designed for chemical similarity assessment [2].
Note that, the LD Pipe is also directly implemented in Ver-
ilog HDL, and employs single-precision floating-point cores.
In the following, we present the input parameters for the
RTL generation software, describe the verification process,
and analyze the design space of the LD processor.

5.1 Automatic RTL Generation
A single software invocation generates a multi-module Ver-

ilog file that contains an LD processor configuration. Two
types of tunable parameters are exposed to the user: Type
S and Type R. Type S parameters are used to specify the
size of the LD processor, such as the LD Core Grid size
(number of LD cores vertically and horizontally), the size
of the popcount units (input width and latency), the width
of the accumulator units (to support arbitrarily large sam-
ple sizes), the size of the Data Mem A memory subsystem
(number of SNP segments per DM Bank), the size of the
FIFO buffer in every LD core (number of floating-point re-
sults), and the FIFO-group size (number of FIFOs grouped
together to saturate the available memory bandwidth). The
optional Type R parameters can be employed to achieve a
more balanced distribution of the FPGA resources to the
building blocks. The use of Type R parameters deploys syn-
thesis attributes individually for each one of the Core Grids,
the Data Mem A memory, and the LD core FIFOs. The
popcount units and the accumulators in the LD cores can
be implemented on DSP blocks or FPGA LUTs, while the
DM Banks and the FIFOs can be mapped on block or dis-
tributed RAM. A summary of the parameters is presented

in Table 1, while the RTL generation software is available
for download at https:// github.com/alachins/ fpga-ld .

Table 1: RTL generation parameters
Parameter Description

Type S

m popcount width (bits)
t popcount latency (cycles)
n accumulator width (bits)
x LD cores horizontally
y LD cores vertically
z words in DM Bank
r words in FIFO
o number of FIFOs grouped together

Type R

gba AFC synthesis code2

gbb HFC Core Grid A synthesis code2

gbbs HFC Core Grid B synthesis code2

qmem DM Bank memory type3

rmem FIFO memory type3

5.2 Verification
To verify correctness of the accelerator architecture, we

generated several LD processor instances and initially con-
ducted extensive post-place and route simulations using Mod-
elsim 6.3f. Additionally, we verified correctness in hard-
ware, deploying a Xilinx ZC706 board with a Zynq Z-7045
FPGA. We configured a Verilog testbench to run a limited-
performance design point (8 LD cores, 32-bit popcount op-
erators) at 200 MHz, and used ChipScope to monitor the
output of the LD processor.

5.3 Design Space Analysis
Given a sample size l, the popcount width and latency

are set according to the following formulas in order to avoid

2Synthesis codes: 0 for BRAMs and DSPs, 1 for BRAMs
and LUTs, 2 for Distributed memory and DSPs, 3 for Dis-
tributed memory and LUTs
3Memory type: 0 for BRAM, 1 for Distributed memory



excessive allocation of resources (Eq. 5) and to ensure that
the bit-enumeration logic does not become the critical path
in the design (Eq. 6).

m ≤ l (5)

t ≥ log2(m) (6)

The above formulas ensure that we do not instantiate unnec-
essarily wide popcount units, i.e., popcount units with input
width larger than our target dataset’s sample size, as well
as restrict the computational path between registers in the
adder reduction tree structure to one addition at most, in
order to maximize the popcount operating clock frequency.

The LD processor size (total number of LD cores) is given
by Eq. 7. Each of the two LD Core Grids contains x × y
cores.

Corestotal = 2× (x× y) (7)

Assume a DRAM bandwidth B, a floating-point precision
prec (bit width), and a function f(B, prec) which calculates
the number of results that can be offloaded to DRAM per
clock cycle. The minimum number of LD cores that need to
be instantiated to ensure that performance is not bounded
by computation is provided by Eq. 8, while Eq. 9 sets the
size of the FIFO groups, i.e., a parameter that configures
the OC Sel module to fully utilize the available bandwidth
B.

Coresmin =

⌈

l

m

⌉

× f(B, prec) (8)

o = f(B, prec) (9)

As already mentioned, the data processor employs double
buffering to stream one of the two genomic regions, the one
considered the database. Each database buffer can store a
fixed number of d SNPs, which is set to 64 SNPs in our
system. A prerequisite for performance is to overlap the
database buffer loading time with computations, which can
be achieved by tuning the z parameter according to d. Con-
sider a function c(d×y, l, B) which calculates the number of
clock cycles required to retrieve d× y SNPs of length l from
DRAM at an available bandwidth B. The DM Bank depth
z must satisfy the following:

d×

⌈

z

2×
⌈

l
m

⌉

⌉

×

⌈

l

m

⌉

≥ c(d× y, l, B), (10)

where the left-hand side is the number of clock cycles re-
quired by an LD core to compute the scores (e.g., D or r2)
between d database SNPs in one of the two database buffers
and half of the query SNPs in a DM Bank. Assuming that
l is the smallest multiple of m (with zero padding) and z
is restricted to be a multiple of 2 ×

⌈

l
m

⌉

, then the above
formula can be simplified as follows:

z ≥
2× c(d× y, l, B)

d
. (11)

6. PERFORMANCE EVALUATION
To assess performance of the FPGA-accelerated system,

we used a workstation with an Intel Xeon E5-2630 6-core
Sandy Bridge processor running at 2.60 GHz and 32GB of
main memory, as a test platform for the software benchmark.
For the hardware evaluation, a series of design points were
generated and mapped on a Virtex 7 VX980T-2 FPGA. We
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Figure 8: Post-PAR resource utilization, maximum
operating clock frequency, and throughput perfor-
mance T (mLD/sec, based on 2,504 samples) when
the total number of LD cores increases.

assess throughput performance in terms of million LD scores
per second (mLD/sec). Note that this metric is tightly de-
pendent on the sample size. In our comparisons, we use
a subset of 10,000 SNPs from the first chromosome of the
human genome (available from the 1000 Genomes project,
http://www.1000genomes.org), with a sample size of 2,504
genomes (phase 3).

6.1 Tuning Type S Parameters
Initially, we explored the design space of the LD proces-

sor by tuning only Type S parameters while maintaining the
default Type R values, which map all memory components
to BRAMs and attempt to maximize the utilization of DSP
slices. Figure 8 illustrates post-place and route (PAR) re-
source utilization, maximum operating clock frequency, and
estimated throughput performance for an increasing num-
ber of LD cores. When the number of cores increases, by
tuning the x and y parameters, the popcount width and la-
tency are constant and set to m = 64 bits and t = 6 cycles,
respectively. The figure reveals that the highest through-
put performance (based on a sample size of 2,504 genomes)
which can be achieved with the current configuration is 174.4
mLD/sec. Furthermore, it is observed that DSPs and FPGA
slices rapidly become the limiting factors and prevent the in-
stantiation of additional LD cores on the target device. This
is not surprising, particularly because the LD pipe heavily
relies on floating-point operators.

Thereafter, we explore performance for increasing pop-
count width and latency. For this configuration, the total
number of LD cores is fixed to 16, i.e., 8 LD cores per grid,
by setting x = 8 and y = 1. Figure 9 demonstrates that
the highest throughput performance now is 349.4 mLD/sec.
This performance improvement over the largest previous
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Figure 9: Post-PAR resource utilization, maximum
operating clock frequency, and throughput perfor-
mance T (mLD/sec, based on 2,504 samples) when
the popcount width increases.

configuration (Figure 8) comes from the wider popcount
operators which significantly reduce the latency for com-
puting the allele and haplotype frequencies. Reducing the
latency for computing or estimating allele and haplotype fre-
quencies has great significance for the population genomics
community. The computational demands for computing al-
lele/haplotype frequencies grow with an increasing sample
size, and the sample sizes of present-day datasets are only ex-
pected to increase (due to the continuous advances in DNA
sequencing technologies), whereas the number of SNPs is
bounded by the chromosomal length. Furthermore, in ad-
dition to association studies that rely on LD, rapid allele
and haplotype counts are also required for the evaluation
of mutation rates in a population [23], or to investigate the
genetic differentiation between populations.

6.2 Tuning Type R Parameters
Driven by the observation that wider popcount operators

yield better performance than larger LD Core Grids, we now
employ Type R parameters to redistribute the resources of
the LD processor configuration that exhibits the largest bit-
enumeration-per-cycle capacity, i.e., x = 8, y = 1, m = 512,
and t = 9. There are five Type R parameters that can be
tuned (see Table 1), however only the first three have an
effect on the utilization of DSP slices, which is currently
the resource with the highest percentage of occupancy. Fig-
ure 10 shows resource utilization and performance as more
LD processor components are mapped to FPGA LUTs and
distributed memory instead of DSP slices and block RAMs.
The default LD processor configuration (#1) fully utilizes
DSPs and block RAMs. The next two configurations map
the HFC blocks of one (#2) and both (#3) LD Core Grids
to LUTs and distributed memory. In addition to all HFC
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Figure 10: Post-PAR resource utilization, maximum
operating clock frequency, and throughput perfor-
mance T (mLD/sec, based on 2,504 samples) for
various R Type configurations.

blocks, the final two configurations also map one (#4) and
both (#5) arrays of AFC blocks to LUTs and distributed
memory.

As can be observed, configuration #4 exhibits the lowest
resource utilization over all resources, which is achieved at
the price of a longer clock cycle and consequently poorer
throughput performance. From the figure, we conclude that
it is beneficial to accept a slight increase in occupied slices
(configuration #5 versus #4) in order to boost throughput
performance by nearly 19%.

6.3 Refining the LD Processor Size
Configuration #5 exhibits the highest throughput perfor-

mance without excessively occupying the available resources
on the target device. This permits to increase the LD pro-
cessor size to boost performance further. At this point, we
opt to continue exploring the design space by increasing the
x parameter only, which will add more LD cores to the LD
Core Grids horizontally. Increasing the LD Core Grid size
by adding more cores vertically (y parameter), or widening
the popcount operators (m parameter), requires additional
memory bandwidth to sustain performance. On the other
hand, placing more LD cores horizontally allows to increase
parallelism by matching more query SNPs to the same num-
ber of incoming database SNPs.

Figure 11 reveals that increasing the size of the LD pro-
cessor from 32 to 40 LD cores leads to a significantly longer
clock cycle (maximum operating clock frequency drops from
137 MHz to 104 MHz) due to increased routing effort, which
diminishes potential throughput performance improvements
from the placement of more LD cores in parallel in each
LD Core Grid. As can be observed, a 40-core LD processor
exhibits poorer performance than a 32-core instance.
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6.4 Comparison with Reference Software
The open-source tool PLINK 1.9 [6] was selected as the

reference software due to superior parallel efficiency in com-
parison to OmegaPlus [4]. We conducted a preliminary per-
formance comparison (results not shown) between PLINK
1.9 and the multi-grained parallel version of OmegaPlus [3],
which was proposed by the authors to improve scalability
of the tool. We measured throughput performance when
both tools compute 104(104 + 1)/2 LD scores. We observed
that, for small numbers of threads (up to 4), both tools ex-
hibit comparable throughput performance (OmegaPlus was
up to 15% faster), whereas when the number of threads in-
creases, PLINK 1.9 is up to 2X faster. Therefore, we opted
to compare the FPGA-accelerated system against PLINK
1.9 to ensure an accurate performance evaluation based on
the current state-of-the-art software.

Table 2 shows execution times and throughput perfor-
mance for the analysis of the test dataset that comprises
10,000 SNPs from the genomes of 2,504 humans. The FPGA
performance refers to the fastest LD processor configuration
detected through the design space exploration, which com-
prises 32 LD cores and exhibits 512-bit-wide popcount units
with 9 clock cycles latency, while all HFC and AFC blocks
are mapped to FPGA LUTs and distributed memory. The
comparisons include the memory access time, and exclude
the amount of time required for prefiltering.

It could be argued that the execution times in Table 2 are
too short to justify the need for acceleration. One should
consider however that the 10,000 SNPs in the test dataset
account for roughly 0.1% of the total amount of variants

Table 2: Performance comparison between PLINK
1.9 software (6-core Xeon CPU) and a 32-core LD
processor instance (Virtex 7 FPGA).

PLINK 1.9 FPGA LD Proc.
Threads Exec. time (sec) mLD/sec Speedup (X)

1 12.3 4.1 200.2
2 9.6 5.2 157.8
4 5.9 8.4 97.7
8 3.8 13.0 63.1
12 3.0 16.4 50.1

in the human genome. Typically, whole-genome analyses
implement a sliding-window approach, where each window
covers a narrow subgenomic region that comprises a limited
number of SNPs (10,000 SNPs is a reasonable size for such
a window). To cover the entire genome of complex species
for instance, tens of thousands of sliding-window iterations
may be needed, requiring several hours or days to complete
an analysis on current workstations. Furthermore, PLINK
1.9 allows only a single region as input, which would require
prohibitively large memory footprint on the test platform
in order to cover larger genomic space in our tests, whereas
our proposed generic algorithm accepts two subgenomic re-
gions as input, which permits the sequential scheduling and
calculation of arbitrarily distant LD associations.

Table 3 provides execution times and throughput perfor-
mance when two simulated datasets with larger sample sizes
are analyzed. Both datasets, D.1 and D.2, comprise 10,000
SNPs, while exhibiting sample sizes of 10,000 and 100,000
sequences, respectively. The 32-core LD processor achieves
throughput performance of 205.7 mLD/sec for dataset D.1,
and 20.4 mLD/sec for dataset D.2.

Table 3: Performance comparison based on sim-
ulated datasets D.1 and D.2 with sample sizes of
10,000 and 100,000 sequences, respectively.

PLINK 1.9 FPGA LD Proc.
Threads Exec. time (sec) mLD/sec Speedup (X)

D.1 D.2 D.1 D.2 D.1 D.2
1 41.1 389.1 1.2 0.128 171.4 159.3
2 31.4 297.6 1.6 0.168 128.5 121.4
4 19.2 180.2 2.6 0.277 79.1 73.6
8 11.3 109.4 4.4 0.456 46.8 44.7
12 9.9 88.3 5.0 0.566 41.1 36.0

7. CONCLUSIONS
In this study, we explored the potential of FPGAs to be

employed as accelerators that boost performance of link-
age disequilibrium computations in population genomics and
genome-wide association studies. We developed a hardware
generation software that allowed rapid design space explo-
ration that reached several high performance design points.
Generating custom accelerator instances enables the deploy-
ment of the largest/fastest design point for the analysis of
the genomic dataset at hand. This has great significance in
real-world analyses that typically need to conduct thousands
of simulations on synthetic datasets with similar character-



istics (e.g., demographic model) and size as the real dataset
under investigation to determine whether the results are sta-
tistically significant. We find that FPGAs can achieve up to
50X faster analysis than current software implementations
executed on multi-core workstations. Finally, we described
a generic algorithm that is executed on the host and en-
ables the offloading of long-range association statistics with-
out conducting redundant operations or requiring excessive
memory resources.

As future work, we intend to port the generic algorithm
on GPUs to explore the potential performance gains, as well
as on systems that comprise different types of accelerator
devices such as GPUs and FPGAs to exploit the aggregate
computational capacity of such heterogeneous systems. Ad-
ditionally, we intend to further develop the automatic gen-
eration software to accommodate other computationally in-
tensive statistics that can benefit from rapid allele and hap-
lotype frequency computations.
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