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Abstract—The SpaceCubeX project is motivated by the need for
high performance, modular, and scalable on-board processing
to help scientists answer critical 21st century questions about
global climate change, air quality, ocean health, and ecosystem
dynamics, while adding new capabilities such as low-latency
data products for extreme event warnings. These goals translate
into on-board processing throughput requirements that are on
the order of 100-1,000× more than those of previous Earth
Science missions for standard processing, compression, storage,
and downlink operations. To study possible future architectures
to achieve these performance requirements, the SpaceCubeX
project provides an evolvable testbed and framework that en-
ables a focused design space exploration of candidate hybrid
CPU/FPGA/DSP processing architectures. The framework in-
cludes ArchGen, an architecture generator tool populated with
candidate architecture components, performance models, and
IP cores, that allows an end user to specify the type, number, and
connectivity of a hybrid architecture. The framework requires
minimal extensions to integrate new processors, such as the
anticipated High Performance Spaceflight Computer (HPSC),
reducing time to initiate benchmarking by months. To evaluate
the framework, we leverage a wide suite of high performance
embedded computing benchmarks and Earth science scenarios
to ensure robust architecture characterization. We report on
our projects Year 1 efforts and demonstrate the capabilities
across four simulation testbed models, a baseline SpaceCube 2.0
system, a dual ARM A9 processor system, a hybrid quad ARM
A53 and FPGA system, and a hybrid quad ARM A53 and DSP
system.
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1. INTRODUCTION
The goal of the SpaceCubeX project is to develop a high
performance on-board computing architecture which enables
next generation Earth science missions by effectively lever-
aging heterogeneous COTS processors. Next generation mis-
sions are invoking sensors with ever increasing data rates and
higher fidelities while at the same time target global and per-
sistent data collections. These goals translate into on-board
processing throughput requirements that are on the order
of 100-1,000× more than previous Earth Science missions
for standard processing, compression, storage, and downlink
operations. Low-latency data products and autonomous oper-
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Figure 1. Process flow for traditional and heterogeneous
hardware development

ations drive computational load even further. Recent studies
have shown that in order to realize mission size, weight,
area, and power (SWAP) constraints while meeting inter-
mission reusability goals, compact heterogeneous processing
architectures will be needed [1, 2].

In a heterogeneous architecture, general OS support, high
level functions, and coarse grained application parallelism
are efficiently implemented on multi-core processors, while a
co-processor provides mass acceleration of high throughput,
fine-grained data parallelism operations. The SpaceCubeX
project will find the most efficient and robust selection of
multi-core CPU and co-processor accelerator resources for
an on-board computing architecture specific to Earth science
missions. Heterogeneous architecture development repre-
sents a significant departure from traditional homogeneous
avionics development as it presents several new challenges.
First, the architecture search space is no longer humanly
tractable as the complexity increases from O(N), driven by
the number of processor types in the homogeneous case,
to O(N2) in the heterogeneous case, driven by the number
of processor and interconnect combinations. To maximize
reuse, the hybrid architecture must perform at a high level
across a robust suite of applications representative of a wide
array of Earth science missions. The inter-processor physical
connections, board topology, and programming model must
work in concert to realize a low-overhead, scalable system
that is transparently programmed. Finally, the architecture,
including firmware and programming interfaces, must be
portable across maturation from breadboard to engineering
units to flight units.
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The SpaceCubeX project addresses these challenges by creat-
ing a tool set and evolvable testbed which enable developers
to perform focused design space exploration of candidate
processing architectures. This technology fundamentally
changes avionics processing hardware development from a
waterfall approach to an iterative feedback model, facilitating
a repeatable, extensible scientific exploration of the archi-
tecture space, seen in Figure 1. We report on the first year
developments as part of this effort and specifically highlight
the technical accomplishments and analysis of the Simulation
Testbed, tools, and benchmark applications used to evaluate
the preliminary system architectures. These architectures
include a baseline SpaceCube 2.0 architecture, an ARM A9
Xilinx Zynq based single chip architecture, a Hybrid ARM
A53 and FPGA architecture, and a Hybrid ARM A53 and
DSP architecture. Evaluation and analysis cover diagnos-
tic, micro-benchmarks, and full hybrid applications covering
single, multi-core and co-processor accelerator experimental
results.

The paper is organized as follows. In Section 2 the back-
ground and related works are presented. Section 3 covers
the Design and Implementation details of the SpaceCubeX
developed evolvable testbed technology and the initial archi-
tectures studied as part of the year 1 efforts. The evaluation
and analysis of the results are presented in Section 4, followed
by the conclusion and future works in Section 5.

2. BACKGROUND AND RELATED WORK
This research addresses NASA’s Earth Science missions and
climate architecture plan and its underlying needs for high
performance, modular, and scalable on-board processing.
The decadal survey era missions are oriented not only to
provide consistent observations with the previous generation
of missions, but also to provide data to help scientists answer
critical 21st century questions about global climate change,
air quality, ocean health, and ecosystem dynamics, while
adding new capabilities such as low-latency data products for
extreme event warnings. Missions such as (P)ACE, HyspIRI,
GEO-CAPE, and ASCENDS are specifying instruments with
significantly increased temporal, spatial, and frequency res-
olutions and moving to global, continuous observations [3].
These goals translate into on-board processing throughput
requirements that are on the order of 100-1,000× more than
previous Earth Science missions for standard processing,
compression, storage, and downlink operations. We have de-
veloped SpaceCubeX: a Hybrid Multi-core CPU/FPGA/DSP
Flight Architecture for Next Generation Earth Science Mis-
sions to address these needs and enable the next generation of
NASA Earth Science missions to effectively meet their goals.

NASA has long used compact, heterogeneous processing
architectures in concert with reconfigurable computing tech-
nologies in order to realize mission size, weight, area,
and power (SWAP) constraints while meeting inter-mission
reusability goals [4]. In a heterogeneous architecture, general
OS support, high level functions, and coarse grained appli-
cation parallelism are efficiently implemented on multi-core
processors, while a co-processor provides mass acceleration
of high throughput, fine-grained data parallelism operations,
to achieve high performance robustly across many application
types. Hybrid architecture development represents a signif-
icant departure from traditional homogeneous avionics de-
velopment and SpaceCubeX provides a structured approach
to fundamentally change the avionics processing architecture
development process to yield the following benefits:

• Enables selection of the most SWAP efficient processing
architecture, with direct impact on mission capabilities, cost,
and risk.
• Minimal extensions to integrate new processors, such as the
anticipated NASA High Performance Spaceflight Computer
(HPSC), reducing time to initiate benchmarking by months.
• Reduces risk due to supply chain disruptions by allowing
a user to rapidly compare alternative component selections,
quantify the impact, and update the processing architecture.
• Leverages a wide suite of high performance embedded
computing benchmarks and Earth science scenarios to ensure
robust architecture characterization.
• Utilizes a proven inter-task programming model to fa-
cilitate benchmark compilation and experimentation, while
being fully interoperable with commercial compilers.

Related Work

The commercial industry has understood the value of hetero-
geneous processing for some time now. High performance
computing and server centers are demonstrating significant
performance benefits by placing multi-core processors and
FPGAs on adjacent sockets in the same server blade. Convey,
Mitronics, and Dini Group are established vendors who sup-
ply these hybrid processing solutions for servers. Microsoft
recently announced achieving 2x acceleration on web server
applications using heterogeneous server blade hardware [5],
which is a significant achievement given the substantial com-
mercial investment to date in accelerating this application
type. Intel recently announced plans to integrate the two
processor types onto the same device using 3-D technology to
further increase performance gains [6]. While SpaceCubeX
can leverage the lessons learned from the HPC industry,
these ground based solutions typically use hundreds of watts
of power and do not address radiation mitigation concerns.
The two primary FPGA vendors sell chips that integrate
ARM processor cores and a reconfigurable fabric, but these
chips were not designed with power reduction and radiation
mitigation in mind [7, 8].

In the mobile computing domain the extremely small form
factor and power requirements coupled with the high volumes
has justified fabrication of heterogeneous system on a chip
devices, such as the Qualcomm SnapDragon or the TI OMAP
processors, which couple multi-core ARM processors with
VLSI tuned to specific wireless protocols, codecs, and image
processing used by the wireless industry. These solutions
meet avionics power requirements, but the accelerated VLSI
functions are too specific to the wireless industry and would
not provide significant processing performance benefit to a
wide range of Earth observing missions.

In the avionics area, work has been performed to try to
normalize and compare avionics processor performance [9]
however this work is focused on homogeneous, not heteroge-
neous computing. The closest realization of avionics hetero-
geneous processing architectures is in the NASA SpaceCube
family of Field Programmable Gate Array (FPGA) based on-
board science data processing systems developed at NASA
GSFC [10]. SpaceCube is based on the Xilinx Virtex family
of FPGA processors, which include embedded CPU, FPGA
and DSP resources. These processing elements are leveraged
to produce a hybrid science data processing platform that ac-
celerates the execution of science algorithms by distributing
computational functions among the elements, allowing each
type of processor to do “what its good at.” The SpaceCube
1.0 system has flown as part of the Relative Navigation
Sensors (RNS) experiment during Hubble Servicing Mission
4 and the current Naval Research Lab (NRL) Materials on the
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International Space Station Experiment 7 (MISSE7) payload.
The original SpaceCube 1.0 system was based on Xilinx
Virtex 4 FPGA technology, and new systems are currently
being developed (SpaceCube 2.0 and SpaceCube Mini) using
Xilinx Virtex 5 FPGA technology.

3. DESIGN AND IMPLEMENTATION
Heterogeneous on-board processing can realize drastic in-
creases in processing performance while addressing process-
ing avionics size, weight, power, and cost. The number of
processors available to the aerospace industry is tractable,
however the number of combinations of these elements and
the number of different interconnect topology permutations,
starts to make this process difficult and error prone for a
human to do. The top-half of Figure 1 depicts the traditional
waterfall hardware development process that has been used
to date for homogeneous processing architectures. Here,
the mission requirements are translated into processing spec-
ifications, which then guide the trade study and selection
of the critical components, such as processor and memory
types, and off-board I/O protocol. Using the data sheets from
those components the additional details, such as board level
topology, interconnects, boot up process are manually derived
into a netlist. The netlist is then used to develop different
maturation levels of hardware from emulation to engineering
units to flight units. Processor level simulations can be used
to predict the hardware performance with a high degree of
confidence, and final performance results are verified with
benchmarks executing on the final hardware.

SpaceCubeX recognizes that heterogeneous architecture de-
velopment adds significant complexity, such that the tradi-
tional hardware development process is no longer feasible. In
SpaceCubeX the development process is updated, as shown
in the bottom-half of Figure: 1, to enable an engineer to
perform focused design space exploration to find the mixture
of processors, topologies, interconnects, etc which best fit the
mission needs by utilizing tools which eliminate manual fit
analysis stages while also providing a common infrastructure
which facilitates code reuse as an architecture matures from
simulation to flight hardware. In this manner the designer can
explore and compare several permutations. Here, the designer
uses our developed Architecture Generation (ArchGen) tool
to select the desired components and topology. The Ar-
chitecture Generation tool configures an Evolvable Testbed,
which uses a common infrastructure to control and monitor
simulations (year 1) or hardware emulations (to be developed
as part of year 2). The Evolvable Testbed is also extensible
to support engineering or flight hardware developed in the
future. To ensure the architecture generated supports Earth
Science missions, the applications and benchmarks selected
represent key processing challenges in the decadal survey
missions. In a heterogeneous processing system, the appli-
cation software must act in concert with and leverage the
benefits of the heterogeneous resources. To this end Space-
CubeX supports a Compilation Environment utilizing prior
IP which provides a common API and infrastructure which
allows a software developer to easily define communication
interfaces between subtasks and to rapidly move subtasks
across processor types. The performance results that will be
collected with each architecture are discussed in Section 4.

Architecture Generation

The Architecture Generation, ArchGen, tool allows a user
to rapidly create a variety of boardlevel architectures by
selecting component types and describing their on-chip and
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Figure 2. Conceptual diagrams of ArchGen systems
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Figure 4. SpaceCubeX Architecture Generator (ArchGen)
tool-flow

Table 1. Hybrid architecture component candidates

Category Candidates
Multi-core Tilera Tile64, Boeing Maestro, Aeroflex LEON4, ...
FPGA Xilinx Virtex7, Altera StratixV, Achronix S22i, ...
DSP BAE RADSPEED, ClearSpeed CSX700, ...
SRAM Atmel M65609E, Honeywell HXSR06432, ...
Interconncets PCIe (Gen2/3), XAUI, RapidIO, SpaceWire ...
Topologies Bus, Mesh, Ring, Crossbar, Butterfly ...
Sensors I/O RS-422, Ethernet, SpaceWire Direct I/O, I2C ...

off-chip interconnect topologies and interfaces, including
sensors and memories. Figure 2 depicts some of the different
board configurations that ArchGen enables a user to specify.
Internally, ArchGen and its Components Database, shown in
Figure 3, leverages conventional object-relational mapping to
describe each component, its properties, and how they are
interconnected. USC/ISIs open-source tool set Torc [11] is be
leveraged along with a Python front-end to initially populate
ArchGens framework in a style similar to the popular EDIF
netlist format, to greatly reduce development efforts and
allow standard object-oriented languages to be utilized. A
high-level diagram of this flow is shown in Figure 4.

Leveraging domain expertise from GSFC, JPL and USC/ISI
the Components Database has been populated with avionics
components of interest for experimentation. A component
entry consists of computational, programmatic, and physical
metadata. Computational metadata are details about how
the component performs computation: number of cores,
cache size, operating frequency, etc. Programmatic metdata
describes how to use the component for computation: the
compiler tool chain, debuggers, and run-time environments
for operating systems. Physical metadata lists the com-
ponents material characteristics: size, weight, I/O, power,
heat, radiation tolerance, etc. A representative collection of
the candidate components and features available during the
selection stage is shown in Table 1. An end user describes a
board architecture using our developed command line Arch-
Gen tool to select components and describe their connections.
ArchGen output is a Board Model XML file used to configure
the Evolvable Testbed and is in an easily parsed format that
could directly imported into common PCB development tools
to start hardware development.

Evolvable Testbed

The Evolvable Testbed enables a developer to rapidly evalu-
ate design space trade-offs based on configurations specified
using ArchGen, while reusing the same testbed infrastructure
to migrate from simulation to emulation level models, greatly
reducing hardware development time.

Simulation represents the preliminary stage of testing and
when performed properly can result in better designs, sav-

Figure 5. SpaceCubeX of Simulation Generator tool-flow

Figure 6. Run-time architecture of the SpaceCubeX
Simulation Environment on a host X86 system

ing significant overall development time. The SpaceCubeX
project extends the conventional simulation concept beyond
simple software and hardware development to incorporate the
entire hybrid compute architecture, shown in Figure 3.

The Simulation Generator tool, shown in Figure 5 utilizes in-
formation from ArchGens Board Model to combine the pro-
cessor simulation models, incorporating industry developed
tools and testing environments, such as Tileras Multi-core
Development Environment and Xilinx UNISIM/SIMPRIM
libraries, for accurate multi-core and FPGA simulation. The
Performance Models database further enhances the simula-
tion by providing parameter adjustments to more accurately
model avionics components, such as adjusting speed grades
or the number of cores available to account for radiation
hardened devices more accurately. The final Simulation
Environment runs on an x86 host PC and allows the use of
existing simulation debugging tools and waveform viewers,
similar to how virtual machines operate on host platforms,
illustrated in Figure 6.

Applications or benchmarks can be compiled based on the
configured architecture and are loaded into the Simulation
Environment. The output of the simulation generator and
compiler is fed into the Simulation Environments control and
monitoring logic which interacts with each of the components
to synchronize run-time execution, loads benchmark exe-
cutables, and evaluates the performance of the system. The
control and monitor are a standalone applications running on
the host PC and interact with components via the Simulation
Interface (Sim IF) wrappers. A Simulation Interface Transla-
tor provides a layer of abstraction between the components to
assemble the full hybrid system, since traditional simulators
are limited to single components, and eliminates the need to
manually interface with each component individually. The
Simulation Environments monitoring logic collects run-time
statistics (compute time, memory utilization, latencies, power
etc) for each benchmark. A user can then adjust the architec-
ture based on this feedback, such as increase the number of
cores for computation or changing interface types, and re-run
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Figure 7. SpaceCubeX co-simulation flow where an end
user provides application source code and the SpaceCubeX
framework compiles for the specific architecture simulation

the experiments to compare the resulting effects. This allows
the end user to quickly identify configurations suitable for
further exploration as an Emulation Testbed.

4. EVALUATION AND ANALYSIS
To evaluate the tools and techniques used in year 1 of the
SpaceCubeX project four architectures have been generated
with the ArchGen and SimGen tools. The architectures were
selected based on criteria specified by space-based platform
architecture experts from GSFC and JPL. A baseline Space-
Cube 2.0 PowerPC system was first developed to provide
an understanding of the performance differences between
the generated simulator and existing hardware. While we
expect performance differences based on the granularity of
operating in a simulation environment, quantifying some of
these differences and tuning our performance models will
reduce the differences in future architectures.

Experimental Setup

Using the ArchGen tools the four architectures are specified
and a board model is generated. The simulator leverages
the Imperas Open Virtual Platform (OVP) simulator [12] as
a core component for simulating and testing the PowerPC
and ARM processors that are part of the evaluation archi-
tectures. OVP provides a suitable interface for specifying
the configuration parameters and generating an executable
to run our software benchmarks and applications. However,
to include support for the FPGA and DSP co-accelerators
a custom accelerator peripheral was developed to provide
control and data transactions across the different simulator
platforms. This results in separately executing simulations
for the different computing platforms, OVP for the multi-
core processors, Synopsys VCS for the FPGA simulation,
and TI’s Code Composer Studio for the DSP. The simulation
environment compilation and execution is illustrated in Fig-
ure 7. This allows an end-user to follow conventional hard-
ware/software development methodologies, but execute on
co-simulators without having to manually launch individual
simulators and manage data transfers between each simulator.
The next section covers the benchmarking and applications
that are then run on each simulated architecture to analyze
performance and capabilities of SpaceCubeX’s Simulation
Environment.
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Figure 8. SpaceCubeX Compilation Flow

Benchmarking and Applications

Each architecture is evaluated using a robust benchmark
suite consisting of micro benchmarks, existing applica-
tions, and future mission scenarios, listed in Table 2. The
micro-benchmarks provide diagnostic metrics on architec-
tural specifics (achievable memory bandwidth, processor to
co-processor bandwidth, etc). JPL provided benchmarks
developed under the High-Performance and Fault-Tolerant
Embedded Computing (HPFEC) task which are relevant to
high computational on-board processing needs and are close
approximations to several Earth observing applications. The
GSFC team contributed benchmarks ranging from processing
kernels to representative Earth science mission scenarios.
The benchmarks outline additional benefits of this technol-
ogy for Earth Science missions, including on-board data
reduction, on-board event detection, adaptive sensing, real-
time reconfiguration and on-board product generation (Level
0/1/2/3). The focus of this work is not currently on achieving
high performance implementations of these benchmarks on
the different architecture’s Simulation Environments. In-
stead, the focus is on the capabilities of the SpaceCubeX
framework to compile and deploy these applications across
the architectures to better understand how the performance
scales moving across the different architectures. Work is
currently underway now that the Simulation Environments
are developed to port more of the applications to the co-
processors and determine effective speedups as compared to
pure software implementations. In fact, the benefit of the
SpaceCubeX project is that with the Simulation Environment,
developers can quickly begin the hardware/software code-
design process before any real hardware is even available,
allowing the complex and often time-consuming development
timelines to run concurrently rather than sequentially.

Application Mapping Process

Targeting application software for a hybrid compute architec-
ture can be a daunting task as an application needs to be parti-
tioned into subtasks, then mapped to specific processor types
and compiled for the different processor types. Bridging from
CPU (software) resources to FPGA (resources) is particularly
difficult. The SpaceCubeX approach is to leverages prior IP
developed under DARPA funding to help streamline the soft-
ware compilation flow, reducing the effort on the benchmark
developer. The compilation flow for an application targeting
SpaceCubeX is shown in Figure 8. This flow still requires
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Table 2. SpaceCubeX Application Benchmark Suite

Benchmark Description
Micro Benchmarks Kernels to benchmark architecture subcomponents and measure system viability
NAS Parallel Benchmarks NASA generated set of programs designed to help evaluate the performance of parallel supercomputers, derived

from computational fluid dynamics (CFD) applications and consist of five kernels and three pseudo-applications
Packet Routing 2 kernels: Packet generation and transmission & Packet reception and verification
ATCORR Atmospheric correction algorithm commonly used in Hyperspectral and other sensing applications
Hyperspectral Classifiers Two classification kernels: Sulfur, Thermal
Hyperspectral
Compression

Lossless Compression algorithm tuned for hyperspectral data

Image segmentation and
segment analysis

Autonomous spacecraft tasking, geological feature identification, analysis, and data handling. (HPFEC-3)

Image Classification Common image processing kernels including feature extraction, shape analysis, and surface analysis. (HPFEC-4)

Table 3. SpaceCubeX diagnostic test results for memory
access

Platform Instructions Time (s) Speedup
SpaceCube 2.0 (PPC) 67944358 2.059 1.000

Zynq (A9) 31208760 0.624 3.299
Hybrid (A53) 29536909 0.591 3.485

manual task partitioning to map computational tasks onto
each of the compute platform resources, but makes use of
USC/ISIs software / hardware co-design library. This library
defines common inter-task communications for dissimilar
devices, providing a common API [13] implementations on
several different processor types. The most difficult piece
of this is bridging to FPGA hardware-like resources which
is accomplished through the use of new COTS High Level
Synthesis (C to gates compilers) and USC/ISIs Redsharc [14]
library which provides the specific VHDL level implemen-
tations of the software / hardware co-design communication
API. The user does not have to convert C code to HDL when
migrating a task to an FPGA device, but still can use pre-
existing highly optimized HDL if desired. This approach
provides a high level of abstraction between the compute
platform and application, enabling developers to seamlessly
cross the software / hardware heterogeneous boundary to
exploit orders of magnitude performance gains from FPGA
implementations through a single API call.

Results

The year 1 results first analyze the SpaceCubeX’s simu-
lator capabilities against the existing SpaceCube 2.0 plat-
form using GSFC developed diagnostic tests. These tests
include evaluating functionality as well as performance of
core operations currently performed by the SpaceCube 2.0
platforms. The simulator is evaluated to determine if these
existing diagnostics can directly run, if any modifications
are necessary, and how the performance differs based on the
actual hardware in order to determine a performance baseline.
The preliminary tests of interest for study are on memory
and peripheral interface access to read/write to memory ac-
cessible by the processor and read/write to control/status/data
registers for each of the peripherals in the system. Tables 3
and 4 list the results based on runtime and speedup of the
tests over the different architecture simulation platforms. To
further evaluate the performance differences between the
SpaceCube 2.0 simulator and hardware platforms Tables 5
and 6 show common microbenchmark results for Dhrystone
and Whetstone and the performance differences between the
simulator and hardware platforms.

The results are highly encouraging as the performance differ-
ences between the simulator and actual SpaceCube 2.0 hard-
ware were less than 10%. This is within tolerance given that

Table 4. SpaceCubeX diagnostic test results for interfaces
access

Platform Instructions Time (s) Speedup
SpaceCube 2.0 (PPC) 7340 0.00022 1.000

Zynq (A9) 6248 0.00012 1.780
Hybrid (A53) 5790 0.00012 1.921

Figure 9. SpaceCubeX NAS Parallel Benchmark results on
ARM A9 and A53 simulation architectures

most simulation environments only offer instruction accurate
simulation as opposed to cycle accurate simulation due to
overall simulation execution times. The SpaceCubeX team
currently is satisfied with the slight differences because the
overall simulation run-times allow an end user to quickly
recompile and run applications at near real-time speeds rather
than waiting for hours or even days. As is often the case
when a hardware platform is being developed, the initial
results may mean changes are necessary in the hardware
platform in later development stages. Having a mechanism to
quickly capture performances allows developers to permute
different architectures and start making SWAP-based design
space tradeoffs.

Additional experiments were performed to evaluate scalabil-
ity of the benchmarks across the different simulation archi-
tectures. Figure 9 illustrates the speedup of the NAS Par-
allel Benchmarks across the ARM A9 and A53 processors.
Furthermore, utilizing OpenMP the benchmark shows how
the benchmark scales with the number of processor cores
(1-4) for the two architecture platforms. The purposes of
NAS in this work are to show the simulator properly handles
the scaling between multiple cores correctly and the speedup
moving to a faster and more capable processor core (ARM
A9 to ARM A53) are accurately modeled.

A number of additional application experiments were run on
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Table 5. SpaceCubeX simulator performance evaluation for Dhrystone benchmark

Platform Runs Clock Cycles/Instructions Time (s) DMIPS Difference
SpaceCube 2.0 HW Platform 20000 23651950 0.2365 48.12727607 -

SpaceCubeX Simulator 20000 7980020 0.2418 47.07260082 2.22%
SpaceCube 2.0 HW Platform 200000 249200120 2.4920 45.67830574 -

SpaceCubeX Simulator 200000 80000020 2.4242 46.95502526 2.76%

Table 6. SpaceCubeX simulator performance evaluation for Whetstone benchmark

Platform Clock Cycles/Instructions Time (s) Difference
SpaceCube 2.0 HW Platform 13334671 0.1333 -

SpaceCubeX Simulator 4780862 0.1449 8.29%

both standalone baremetal simulators as well as full Linux
systems running on the simulator. A full Linux kernel and
root file system along with libraries for OpenMP, GNU Scien-
tific Library (GSL) and networking support allow for a VM-
like experience once the simulator boots and starts running.
The end user cross-compiles the application and copies the
binary over to the simulator, runs the experiment, and collects
the results. Figure 10 shows the full run-time comparisons
between the eight applications on the simulator generated
architectures. These results are on a log scale and lower is
better. Not all benchmarks have been perfectly optimized
for the hardware. As part of year 2 the modifications for
each application based on the platform, especially the FPGA,
are being made. Figure 11 provides an energy consumption
comparison based on the applications to allow a designer to
start making power and performance design considerations
based on the application needs and system power capabilities.

Overall, these results are highly encouraging and motivating
the need to migrate from lower performance processor-based
systems to hybrid multi-core/FPGA/DSP architectures for
next generation space-based systems used for earth science
missions. The year 1 results include running over 200
benchmark application experiments on a full set of eight
permuted architectures for multi-core processors, FPGAs and
DSPs. In general it was observed the ARM A53 system
significantly outperforms the ARM A9-based architectures,
but at a slightly higher cost in power consumption. Multi-
core architectures provide a fast, scalable approach to quickly
accelerate an existing single threaded application using com-
mon libraries, such as OpenMP. Also, hybrid architectures
provide the best performance and power efficiencies at a cost
of additional development time and complexity. However,
the benefit of the SpaceCubeX framework is that a developer
can begin the hardware/software co-design process far earlier
in the development cycle and even provide feedback on
architecture decisions. Finally, the SpaceCubeX framework
provides a convenient mechanism to quickly port applications
between different architectures and perform design space
exploration studies specific to their application or mission
needs.

5. FUTURE WORK
Emulation follows simulation as the next stage of testing
and is critical to enable medium to large scale tests of the
system, in near real-time on representative data sets. As
the project has concluded with year 1 simulation research,
we are now beginning to design and implement the Em-
ulation testbed. The work will extend the capabilities of

the Simulation testbed presented here to support running on
disparate development boards and devices. Emulation allows
applications to run on representative hardware, modeling
integration between the different physical components. In
some cases the devices might be early release development
boards, whereas, in other cases the hardware maybe close to
the actual final hardware, but requires fine-tuning the system
to better reflect the target architecture. Furthermore, with
emulation the applications are running at closer to real-time
speeds which decreases the time per experiment and allows
for larger data sets to run. This enables tighter integration
with memory, sensor interfaces, and other protocols between
the target architecture and other components in the system.

Proceeding to emulation does present some challenges, such
as the requirement of careful accounting of computation and
data transfer times to avoid penalizing the experiment for
emulator limitations. The interfaces between the different
physical components, such as an ARM A53 processor and
FPGA device, must be properly mapped and managed. Fi-
nally, all of this needs to be implemented in a seamless top-
level interface such that the end user does not manually have
to manage loading and running their application across all of
these different devices.

We will leverage the board model generated by the ArchGen
tool and develop a complementary Emulation Generator tool
to build the necessary infrastructure to assemble breadboard
hardware to create the Emulation Testbed. A key advantage
of this approach is the considerable reuse of interfaces and
code from the Simulation Testbed and the Benchmarks. This
includes all of the software infrastructure to handle the run-
time distribution, control, and monitoring of the results.

Overall, the results from the SpaceCubeX project have been
highly encouraging and are directly impacting the selection
and design of the future SpaceCube hardware. As a result,
the diagnostics, benchmarks, and applications already devel-
oped can be immediately leveraged for the development of
engineering and future flight hardware. Lastly, we have been
in discussions with external groups to test their applications
on these simulation and emulation platforms to help develop
more user friendly interfaces, APIs, and models that can
directly impact future missions and earth science research.
We hope to continue to open our tools and models to the
broader research community and look forward to contin-
ued advancements and research into heterogeneous multi-
core/FPGA/DSP platforms for space-based applications.
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Figure 10. SpaceCubeX performance results for the architectures implemented in the Simulation Environment

Figure 11. SpaceCubeX energy consumption results for the architectures implemented in the Simulation Environment
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